Big Data, Open Data and Research Data Management

Odisha Library Academy Webinar Series- II 23rd May 2020

> ARD Prasad Former Professor DRTC, ISI

Agenda

- Data
- Big Data
- Open Data
- RDM

Data

Sources of Data

- Data from Labs, Universities, Industries from Research Projects, Surveys, Theses and Dissertations
- Streaming Data from various equipment (satellites, sensors, CCTVs, biomedical) and social media

Avatars of Data

- Experimental
- Clinical
- Observational
- Survey

- Numeric
- Textual
- Visual
- Digital or Physical

More Avatars of Data

- Structured Data Tabular data as in the case Relational Data Bases Example: MySQL, postgreSQL
- Semi-Structured Data Data which has some structure but cannot be saved in a tabular form in relational databases is known as semi structured data. Example:XML data, email messages etc.
- Unstructured Data Example- Video files, Audio files, Text file having no structure etc.

Data Majors

- Government Data
- Research Data

Big Data

 Big data is huge and traditional data processing applications are inadequate Challenges include capture, curation, search, sharing, storage, transfer, analytics, visualization, and information privacy & security.

– wikipedia (modified)

Three V's of Big Data

- Volume (Terabytes to Zettabytes)
- Verity (structured & unstructured)
- Velocity (Batch processing to Streaming Data)

- Veracity (bias, noise and abnormality)
- Validity (trustworthiness
- Volatility (current or obsolete)

Volume of Data

- Facebook handles 30+ petabytes of user generated data
- Youtube users upload 48 hrs. of video every minute
- **Twitter** gets **175** million tweets everyday (2012)
- Google processes 20,000 TB of information a day
- **Note**: Social media data is heavily used for business analytics

Stakeholders of Big Data

• Data Capture (Information Science people)

- Formats & structure of data
- Standards for interoperability & discovery metadata & ontologies
- Filtering & weeding out irrelevant data
- Data Curation: ensuring long term preservation and reuse
- Technology for Big Data (Technology people)
 - Hadoop Eco System, NoSQL etc.
- Data Analytics (Statisticians)
 - Descriptive, Predictive, & Prescriptive
- Domain Experts

Vertical Vs. Horizontal Scaling

- Vertical scaling means that you scale by adding more power (CPU, RAM) to your existing machine
- Horizontal scaling means that you scale by adding more machines into your pool of resources

In Data Bases

A good example for horizontal scaling is Cassandra, MongoDB. Vertical scaling is MySQL

NoSQL DBMS (Non RDBMS)

- Key / Value Based
 - Redis, MemcacheDB, etc.
- Column Based
 - Cassandra, HBase, etc.
- Document Based
 - MongoDB, CouchDB, etc.
- Graph Based
 - AllegroGraph, Neo4J, etc.

Analytics and Visualisation

Open Source Software: R, R Studio Commercial: MatLab

Predictive Analytics

- It utilizes a variety of statistical, modelling, data mining, and machine learning techniques
- Predictive analytics can only forecast what might (NOT WILL) happen in the future, because such analytics are probabilistic in nature.

Prescriptive Analytics

 Recommend one or more courses of action -- and showing the likely outcome of each decision.

• Source: Dr. Michael Wu

Open Data

Re-usability

- It is impossible to imagine the **evolution of mankind** without reusing the experience, knowledge of the past generations
- Evolution of **languages** ensured effective communication of the acquired knowledge to the successive generations
- Writing(scripts) enhanced reusability by recording knowledge
- Libraries played an organised/institutionalised role in reusability by preserving and disseminating knowledge

Worldwide Movement Open Mantra

- Open Source Software
- Open Access to Information/Content
- Open Standards
- Open Data Repositories
- Open Science/ Open Research

Open Notebook Science

- Practice of making the entire primary record of a research project publicly available
- Failed, less significant, partial and otherwise unpublished experiments; so called 'Dark Data'
- In case of Governments too have unpublished Dark Data

Why data is not published? Many Publications used data

- Publishers point of view
 - For lack of space (not in case of Web)
 - Not quite profitable
 Recently some publisher are insisting
- Author point of view
 - Author might have overlooked the data
 - Author deliberately did not present data so that others can not verify the data

Example

Some suspect that Sigmund Freud's data is of fictitious persons, not just fictitious names

Controversy that some particle is moving faster than light

Aaron Swatch (JSTOR)

Closed Data (not completely open)

- Data is not published
- Subscription based access
- Access to registered users
- Encrypted data
- Data requires proprietary tool to access
- Copyright/license/patent forbidding reuse
- Not allowing robots/spiders, CAPTCHA to access data
- Time-limited access, not allowing bulk downloads
- Political, legal, commercial pressure on restricting or banning access (Boris Pasternak, Salman Rushdie)

In Support of Open Data

- Data belongs to Mankind
- Mostly data is generated by Public Money
- Facts can not be copyrighted
- Data value will be fully realised if it is widely used, reused
- Restrictions will result in anti-creative-commons
- Open data will create more harmony
- Will accelerate more scientific research

If data is openly available ...

- Others may draw different conclusions, sometimes, contradictory to that of the author
- Others may deal with other facets of the data
- Data Transparency supplements the Objectivity and self corrective characteristics of Science
- Note: If "Case history of patients" is openly available, it will contribute significantly to medical research

Information/Digital Divide

- Open Access Journals and Institutional Digital Repositories helped bridging gap in digital divide to a large extent, especially in Humanities and to a lesser extent in Social Sciences and even lesser in Physical and Natural Sciences
- Physical and Natural Sciences do require laboratory infrastructure

Against Open Data

- Data generated by public money will be used by private organisations
- Privacy concerns
- Data collected, cured by private organisations should get back their investment
- Data was collected using costly equipment or hired manpower

Philosophy

- Data should be freely available with out restrictions such as
 - Biased copyright laws,
 - Some ridiculous patents etc.

 Philosophy and Sociology of Science should guide us

Bad Side of Science

- Science is vastly used for
 - defence purposes (to kill people)
 - profit making (to rob people)
 - Of course, not without a few good side effects

Debatable

- Data in wrong hands
- How to make crude Bombs ?
- Some issues related to pornography
- Governments Vs. Terrorism:
 - Terrorists misuse information
 - In the name of anti-terrorism Governments encroach into privacy of people
 - George Orwell was short-sighted

Research Data Management

What is RDM?

The term **Research data management** includes organising, structuring, storing the data generated during a research project

Covers every phase of Research Data Life Cycle

Why RDM?

- Increases individual and institutional reputation because the data can be cited
- Improves the quality of research by ensuring data validation
- Reduces duplication of research
- Avoids loss of data
- Streamlines research process

Why RDM?

- Funders can know how the data is being used and support research projects
- Some funding agencies already mandated Data Managemnt Plan (DMP) in the proposal

RDM Rules

- Understand how institutions deal with research data
- Institution's take on RDM to establish policy and strategy
- Ensure researchers are aware of what data is available
- Provide easy to use, robust data storage
- Make it easy for others to find and cite research data

Data Mangement Plan (DMP)

- Is a formal document that outlines how data are to be handled both during a research project, and after the project is completed -- Wikipedia
- A requirement by many funding agencies
- Comply with legal and ethical guidelines

• NOTE: We developed an online model to be adopted by Indian funding agencies

Policy Should be the Guide

- Governement should mandate
 - National Data Sharing and Accessibility Policy (NDSAP) 2012
- Funding Agencies
 - Should insist DMP NSF, Welcome Trust etc.
- Organisations Research Labs, Universities
 - Evolve policy in tune with Govt. And Funding agency requirements
 - Digital Curation Centres (DCC) to be established
 - Librarians should be trained

Research Data Life Cycle

- Capture
 - Collect data from Surveys, Experiments from equipments, instruments etc.
 - Structuring: Database tables
 - Formats: Using Open Standards formats
- Cataloguing: Creating metadata, assigning subject descriptors, Linked Open Data, DOI
- Data Repository: Making data discoverable, shareable, allowing harvesting, and reusable

RDM Includes

- Creating/Acquiring Data, Anonymisation
- Converting Data into Open Standard Format
- Adding Metadata
- Classifing Data (Ontologies)
- Adding Licensing
- Adding Persistent Identifiers
- Hosing Data Repositories
- Backup

A Few Examples of Research Data

- Maps
- Genome Data
- chemical compounds
- Bio-medical data and case histories
- Government Data

- GIS data
- Weather Data
- Simulation Data
- Log Data
- Social Media data
- Survey data

FAIR Data

- Findable
- Accessible
- Interoperable
- Reusable

5 Star Data Tim Berners-Lee

- Make ...
 - data available on the Web Under open license
 - data available as structured data
 - data available in a non-proprietary open format (e.g., CSV instead of Excel)
 - use URIs to denote things, persisten Id
 - link your data to other data to provide context (LOD)

Open Archival Information System OAIS Reference Model

- Purpose
 - To build trusted repositories
 - Facilitate analysis and comparison of repositories
 - Informing system design
 - Preservation metadata

Role of libraries in RDM

- **Providing access to data:** Traditional library services include consultation and reference service for researchers looking for data
- Awareness and support for managing data: Educating researchers about the importance of data management and hands on support for data management life cycle
- Managing a data collection : This includes data collection, data management, data preservation DATA CURATON

Core Competencies for librarians

- Some level of subject knowledge in order to understand the domain properly
- How to provide access to data centres, repositories etc.
- Knowledge of policy and standards for RDM
- Knowledge of Data management tools
- Knowledge of metadata schema, data formats, domain ontologies

Core Competencies cont...

- Linked Open Data (LOD)
 - Linking and data integration techniques
- Data repositories and storage platforms
- Data citation and referencing
 practices
- Research practices and workflows

Points to Ponder

- Domain specific data curation strategies
- No one-size-fits-all solutions, but alignment ultimately needed
- Are there common collection, representation, and service principles?
- What are the data intensive domains

File Formats

- Open Vs. Proprietary Formats
- Compressed Vs. Uncompressed
- Open and Lossless Formats
 - RTF
 - XML
 - Uncmpressed TIFF

Some Domain Specific Metadata Schema

- Dublin Core: Considered as the Lowest Common Denominator among metadata Schema
- Darwin Core: Biological Diversity Data
- Data Documentation Initiative (DDI): Social and Behavioural sciences
- Directory Interchange Format: Earth Sciences
- ISO 19115:2003: Geographic data such as maps and charts
- PBCore: Media assets like individual clips and full, edited, aired productions
- Science Data Literacy Project: Astronomy, Biology, Ecology and Oceanography
- VRACore: Visual Objects like images

Ontologies

- To make relations NT, BT, RT explicit
- Assign Unique IDs to each term
- Helps in Discovery and Linked Data
- Existing Thesauri: Inspec, NASA, Agrovoc etc.
- Use OWL or SKOS

Some Open Data Licenses

- Open Data Commons Public Domain Dedication and Licence (PDDL)
- Dedicate to the Public Domain (all rights waived)
- Open Data Commons Attribution License
- Attribution for data(bases)
- Open Data Commons Open Database License (OdbL)
- Attribution-Share Alike for data(bases)
- Creative Commons CCZero

Data Citation

We have been providing reference to a research publication. Similarly, we are expected to provide a reference to a data set

Distinct from metadata, as metadata may have much more information like administrative, structural, preservation etc.

Advantages of Data Citation

- Helps in linking the data set(s) to the publication(s)
- A citation study will ensure what are all the publications that have used a particular data set (Impact of the data set – Impact can not be citation alone, there might other tangible and intangible impacts)
- Researcher can find out how others have used the same data set from a different perspective

Typical Citation comprises of...

- Author/Principal Investigator ARCID
- Title of Data of the Data Set
- Version Number in case the data is updated
- File Format of the Data
- Location of the data set (ex: data repository)
- URI: DOI, CNRI Handles
- Place of Publication
- Year of Publication etc.

Data Validation Software

- Open Refine
- R
- Spark
- Python
- Many Commercial Tools

Extract, Transform and Load

• ETL is a type of data integration that refers to the three steps (extract, transform, load) used to blend data from multiple sources.

• -- <u>www.sas.com</u>

- S/w Tools
 - Talend
 - Scriptella
 - Pentaho Data Integrator Kettle
 - GeoKettle

Data Repository Software

- DataVerse
- CKAN
- DKAN
- Dryad
- GeoNode/GeoServer

Registry of Data Repositories re3data.org

- Currently has 634 entries of data repositories from different disciplines
- Each entry includes
 - URL of the repository
 - A short Description of the repository

Data Search Sites

<u>Google</u>

https://datasetsearch.research.google.co

<u>m</u>

- ELSEVIER
- <u>https://datasearch.elsevier.com</u>

ISI-DRTC Projects

- Living Knowledge (Funded by European Commission) on Semantic Web
- ITPAR: India-Trento Program for Advanced Research (Extending PMEST/DEPA to DERA using description logics)
- AgInfra (Funded by European Commission): Dealing with Agricultural Data Infrastructure

DRTC/ISI Workshops

- Conducted 2-week international workshop with ICSU/CODATA in March, 2015
- TAB member of RDA, Co-chairing session on Agricultural Data
- Conducted an International Conference on 'Big Data and Knowledge Discovery' (March, 2016)

Thank You

ard@drtc.isibang.ac.in ardprasad@gmail.com